CS 4530 Software Engineering

Lesson 8.1: Continuous Integration

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand

Khoury College of Computer Sciences
© 2022 released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe how continuous integration helps to catch errors sooner In
the software lifecycle

* Use continuous integration systems to automate testing in real
software projects

Cost to Fix a Defect Over Time

Rough estimate

i Old feedback loop: do this infrequently

é’ New feedback loop: do this continuously

©

D

O

O

Feedback loops we’ve covered:
Requirements analysis, unit testing, code review
/
OO/) OG)&’ OG& <OO OO/)) % o) <‘92‘®
G © % S & %, S
>0 2 9 . 7 % Cx. O
4 Q Q & Z &y
2 Sx. Q % o,
Q % o) 7 Q
’)/ © Oé A
O
A2 o7
/5 ¢
o C}/e.
4 %

Continuous Development

Improving quality & velocity with frequent, fast feedback loops

Develop Build Test Deploy Monitor

Code Review Style Check Integration End-to-end
Test Test

Compile Load Test

Unit Test

Prepare
Deployment

Continuous Integration

Motivation

* Our systems involve many components, some of which might even be in
different version control repositories

* How does a developer get feedback on their (local) change?

Our changed code

l

Cache Build Build Build Send
Check friends list Newsfeed Suggestions response

Other developers’ changed code

Continuous Integration is a Software Pipeline

I Build - Test I

Develop Deploy Monitor

End-to-end
Integration Test KPls
Code Review Style Check 'Igest

Compile Load Test

Unit Test

Prepare
Deployment

Automate this centrally, provide a central record of results

Build Systems

Automatically compiling code and generating executables

* You’ve probably used multiple of these;
* Make, maven, ant, gradle, grunt, sbt
* Why use a build system?
* Builds should be repeatable
* Builds should be reproducible

* Builds should be standard

Build Systems

Not just compilation

* Fetch dependencies and link them (using a package manager like maven, pip
or npm)

* Provision & teardown resources for integration testing
* Run tests
* (Generate a release archive

* |deally, do this all in parallel as much as possible

How do we apply continuous integration?
Testing the right things at the right time

* Do we integrate changes immediately, or do a pre-commit test?
* Which tests do we run when we integrate?

* How do we compose the system under test at each point?

Changed code

l
Cache Build Build Build Send
Check friends list Newsfeed Suggestions response

Other developers’ changed code

Continuous Integration in Practice

Small scale, with a service like CircleCl, GitHub Actions or TravisCI
GitHub

%
% for updates

Commits code to

Developer

CircleCl GitHUb TravisCl
Actions

Runs build for each
commit

Example CI Pipeline

Open source project: PrestoDB

prestodb / presto

Current Branches Build History Pull Requests

X Pull Request #15372 Fix extracting logic in dynamic filtering whe

SIS ES SIS X

When integrating with filter pushdown, we extract dynami

-O- Commit cde9e65

1 #15372: Fix extracting logic in dynamic filtering when integrated wi

I Branchmaster

™ Ke
Build jobs View config

+# 52304.1 1 AMD64 £ Trusty </> Java
H 52304.2 {1 AMD64 Trusty </> Java
H 52304.3 {1 AMD64 £ Trusty </> Java
H 52304.4 {7 AMD64 Trusty </> Java
H 52304.5 {1 AMD64 £ Trusty </> Java
H 52304.6 £ AMD64 £ Trusty </> Java

{9 #52304 failed

(< Ran for 17 min 40 sec
(Y Total time 10 hrs 26 min 10 sec

7] 10 hours ago

) MAVEN_CHECKS=true
) WEBUI_CHECKS=true
() TEST_SPECIFIC_MODULES=presto-tests
) TEST_SPECIFIC_MODULES=presto-tests
() TEST_SPECIFIC_MODULES=presto-tests

Ng TEST_SPECIFIC_MODULES=presto-tests

More options —

(© 10 min 51 sec
(© 58sec

(© 6 min 7 sec
(© 24 min 50 sec
(© 7 min 45 sec

(Y 8 min 4 sec

https://travis-ci.com/qithub/prestodb/presto

https://travis-ci.com/github/prestodb/presto

Example CI Pipeline - TravisCI

At a glance, see history of build

prestodb / presto

Current Branches Build History Pull Requests More options —

v/ master This patch bumps Alluxio dependency to 2.3.0-: -O- #52300 passed (Y 10 hrs 49 min 31 sec

@ James Sun o 36392a2 2 2 days ago

| master Handle query level timeouts in Presto on Spark -o- #52287 errored (O 11 hrs 6 min 44 sec
Andrii Rosa o aab5ea7 7 2 days ago
| master Fix flaky test for TestTempStorageSingleStream -O- #52284 errored (© 11 hrs 50 min 37 sec

Vv master Check requirements under try-catch -o- #52283 passed (O 11 hrs 3 min 20 sec
Andrii Rosa o fff331f 2 days ago

< master Update TestHiveExternalWorkersQueries to cre: -O- #52282 passed (© 10 hrs 55 min 37 sec

@ Maria Basmanova -O- 746d7b5 2 days ago

I @ Wwenlei Xie -0- 193a4cd 7 2 days ago

v/ master Introduce large dictionary mode in SliceDiction -o- #52277 passed (Y 10 hrs 43 min 30 sec https://travis-ci.com/qithub/prestodb/presto

Q N T T R RO e AN - | — O

https://travis-ci.com/github/prestodb/presto

Cl In Practice: HW3 Autograder

test.yml (Cl workflow file)

name: 'Build and Test the Grader'
on: # rebuild any PRs and main branch changes
pull request:
push:
branches:
- main
- 'releases/*'
jobs:
build:
runs-on: self-hosted
steps:
- uses: actions/checkout@v?2
- uses: actions/setup-node@v2

with:
node-version: '16'°
- run: |
npm install
test:
runs-on: self-hosted
strategy:
matrix:
submission: [a, b, ¢, ts-ignore, linting-error, non-green-tests, empty]
steps:

- uses: actions/checkout@v?2
- uses: actions/setup-node@v2

with:
node-version: '16°
- uses: ./
with:

submission-directory: solutions/${{ matrix.submission }}

GitHub Actions Results

test.ymi
on: push

@ build

Matrix: test
@ test (a)
@ test (b)
@ test (c)
@ test (ts-ignore)
@ test (linting-error)
@ test (non-green-tests)

@ test (empty)

30s

3m 6s

3m 3s

2m 58s

5s

31s

35s

4s

CIl Pipelines Automate Performance Testing

Example: Developing a Fuzzer

* "Fuzzers” are automated testing systems that aim to automatically generate
Inputs to programs that cover code and reveal bugs

* Fuzzers are non-deterministic: to evaluate with confidence, need repeated,
long-running trials

* Evaluating fuzzers is time consuming, determining which changes impact
performance is confusing

CIl Pipelines Automate Performance Testing

eval-10m-5x.yml

on: push Matrix: evaluate [run-fuzzer
@ evaluate / build-matrix 55 @ evaluate / run-fuzzer (... 12m 21s @ evaluate [repro-jacoco 5m 5s @ evaluate / build-site 52s
@ evaluate [run-fuzzer... 12m 25s

@ evaluate [run-fuzzer... 12m 23s

A S Every commit: Run 10 wminute
performance test on 5
benchmarks, repeating each test
5 times (25 concurrent jobs)

@ evaluate / run-fuzzer (... 12m 13s
@ evaluate [run-fuzzer... 12m 24s
@ evaluate / run-fuzzer (... 12m 21s
@ evaluate [run-fuzzer... 12m 23s
@ evaluate / run-fuzzer (... 12m 27s

@ evaluate / run-fuzzer (... 12m 13s

eval-24h-20x.yml

@ evaluate / run-fuzzer... 12m 24s on: workflow_dispatch Matrix: evaluate [run-fuzzer

@ evaluate / build-matrix 2s ® e @ evaluate [run-fuzzer (an... 1d0h @

Q evaluate | run-fuzzer 12m 25s e @ evaluate [repro-jacoco 13m 52s evaluate [build-site

@ evaluate [run-fuzzer... 12m 26s © evaluate / run-fuzzer (bc... 1d oh

N T ——— jimaliat] munzruzzari(cl. Teh Own Pemand: Run 2.4 hour
@ evaluate / run-fuzzer (m... 1d oh P@}»fo'pw\ ance test on 5
ievabzt] run=fuzzeriihs daih benchwmarks, repeating each test
N S — 2.0 times (100 concurrent jobs)

@ evaluate / run-fuzzer (bc... 1d 0h

@ evaluate [run-fuzzer (cl... 1d oh

F VREORARIN RERRIRT SRR ot s Pt S M

https://github.com/neu-se/CONFETTI/actions

https://github.com/neu-se/CONFETTI/actions

CIl Pipelines Automate Performance Testing

closure

Branch Probes Over Time

30000 > 2
e

-

20000

Branch Probes Covered

15000

Campaign Time (minutes)

Download this graph as PDF

https://github.com/neu-se/CONFETTI/actions

T
1000

T
1500

eval-24h-20x.yml

on: workflow_dispatch

@ evaluate / build-matrix 2s ® ®

config

= reporting-ci

Matrix: evaluate / run-fuzzer
@ evaluate / run-fuzzer (an...

@ evaluate [run-fuzzer (bc...

@ evaluate / run-fuzzer (cl...

@ evaluate / run-fuzzer (m...
@ evaluate [run-fuzzer (rh...
@ evaluate [run-fuzzer (an...

@ evaluate [run-fuzzer (bc...

@ evaluate / run-fuzzer (cl...

¢ ROReTR KRR R RN Lt P T

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

1d Oh

e @ evaluate [repro-jacoco 13m 52s evaluate / build-site

Ov Pemand: Run 24 hour
performance test on 5
benchwmarks, repeating each test
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

Continuous Integration in Practice

Large scale example: Google TAP

>50,000 unigue changes per-day, > 4 billion test cases per-day

Pre-submit optimization: run fast tests for each individual change (before
code review). If fast tests pass, allow the merge to continue

Then: run all affected tests; “build cop” monitors and acts immediately to roll-
back or fix

Build cop monitors integration test runs

Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Continuous Integration

Summary and next steps

* Cl helps catch errors sooner in the software lifecycle by performing
integration and end-to-end tests sooner

* Cl can be applied in small-scale projects by running complete test suites for
each commit, or in larger projects by running pre-commit tests per-commit
and complete integrations regularly

* Cl assumes the ability to automatically provision infrastructure on which to
run those integration tests [next lesson]

