
Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences
© 2022 released under CC BY-SA

CS 4530 Software Engineering
Lesson 8.1: Continuous Integration

http://creativecommons.org/licenses/by-sa/4.0/


Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe how continuous integration helps to catch errors sooner in 
the software lifecycle

• Use continuous integration systems to automate testing in real 
software projects



Cost to Fix a Defect Over Time
Rough estimate

Concept

Design

Development

Local Testing

Commit/Code Review

Integration

Production

Late-Stage Production

De
fe

ct
 C

os
t

Feedback loops we’ve covered:
Requirements analysis, unit testing, code review

Old feedback loop: do this infrequently
New feedback loop: do this continuously



Continuous Development
Improving quality & velocity with frequent, fast feedback loops

Code Review Style Check

Compile

Unit Test

Prepare 
Deployment

Integration 
Test

Load Test

KPIsEnd-to-end 
Test

Develop Build Test Deploy Monitor



Continuous Integration
Motivation

• Our systems involve many components, some of which might even be in 
different version control repositories

• How does a developer get feedback on their (local) change?

My Social Network App

Cache 
Check

Send 
response

Build 
friends list

Build 
Suggestions

Build 
Newsfeed

Our changed code

Other developers’ changed code



0…………….

Continuous Integration is a Software Pipeline

Code Review Style Check

Compile

Unit Test

Prepare 
Deployment

Integration 
Test

Load Test

Automate this centrally, provide a central record of results

KPIsEnd-to-end 
Test

Develop Build Test Deploy Monitor



Build Systems
Automatically compiling code and generating executables

• You’ve probably used multiple of these:

• Make, maven, ant, gradle, grunt, sbt

• Why use a build system?

• Builds should be repeatable

• Builds should be reproducible

• Builds should be standard



Build Systems
Not just compilation

• Fetch dependencies and link them (using a package manager like maven, pip 
or npm)

• Provision & teardown resources for integration testing

• Run tests

• Generate a release archive

• Ideally, do this all in parallel as much as possible



How do we apply continuous integration?
Testing the right things at the right time

• Do we integrate changes immediately, or do a pre-commit test?

• Which tests do we run when we integrate?

• How do we compose the system under test at each point?

My Social Network App

Cache 
Check

Send 
response

Build 
friends list

Build 
Suggestions

Build 
Newsfeed

Changed code

Other developers’ changed code



Continuous Integration in Practice
Small scale, with a service like CircleCI, GitHub Actions or TravisCI

Commits code to
Developer

GitHub

TravisCI

Checks for updates

Runs build for each 
commit

GitHub
ActionsCircleCI



Example CI Pipeline
Open source project: PrestoDB

https://travis-ci.com/github/prestodb/presto

https://travis-ci.com/github/prestodb/presto


Example CI Pipeline - TravisCI
At a glance, see history of build

https://travis-ci.com/github/prestodb/presto

https://travis-ci.com/github/prestodb/presto


CI In Practice: HW3 Autograder
name: 'Build and Test the Grader'
on: # rebuild any PRs and main branch changes

pull_request:
push:

branches:
- main
- 'releases/*'

jobs:
build:

runs-on: self-hosted
steps:

- uses: actions/checkout@v2
- uses: actions/setup-node@v2

with:
node-version: '16'

- run: |
npm install

test:
runs-on: self-hosted
strategy:

matrix:
submission: [a, b, c, ts-ignore, linting-error, non-green-tests, empty]

steps:
- uses: actions/checkout@v2
- uses: actions/setup-node@v2

with:
node-version: '16'

- uses: ./
with:

submission-directory: solutions/${{ matrix.submission }}

test.yml (CI workflow file)
GitHub Actions Results



CI Pipelines Automate Performance Testing
Example: Developing a Fuzzer
• “Fuzzers” are automated testing systems that aim to automatically generate 

inputs to programs that cover code and reveal bugs

• Fuzzers are non-deterministic: to evaluate with confidence, need repeated, 
long-running trials

• Evaluating fuzzers is time consuming, determining which changes impact 
performance is confusing



CI Pipelines Automate Performance Testing

https://github.com/neu-se/CONFETTI/actions

Every commit: Run 10 minute 
performance test on 5 

benchmarks, repeating each test 
5 times (25 concurrent jobs)

On Demand: Run 24 hour 
performance test on 5 

benchmarks, repeating each test 
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions


CI Pipelines Automate Performance Testing

On Demand: Run 24 hour 
performance test on 5 

benchmarks, repeating each test 
20 times (100 concurrent jobs)

https://github.com/neu-se/CONFETTI/actions

https://github.com/neu-se/CONFETTI/actions


Continuous Integration in Practice
Large scale example: Google TAP

• >50,000 unique changes per-day, > 4 billion test cases per-day

• Pre-submit optimization: run fast tests for each individual change (before 
code review). If fast tests pass, allow the merge to continue

• Then: run all affected tests; “build cop” monitors and acts immediately to roll-
back or fix

• Build cop monitors integration test runs

• Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)



Continuous Integration
Summary and next steps

• CI helps catch errors sooner in the software lifecycle by performing 
integration and end-to-end tests sooner

• CI can be applied in small-scale projects by running complete test suites for 
each commit, or in larger projects by running pre-commit tests per-commit 
and complete integrations regularly

• CI assumes the ability to automatically provision infrastructure on which to 
run those integration tests [next lesson]


